Bavarian rivers are among the most important and biodiverse ecosystems in our landscape. However they are also particularly sensitive to climate change. In the interdisciplinary project AquaKlif project partners will investigate climatic stressors such as temperature, precipitation-related fine sediment input and varying runoff and their effects on water ecology and quality. The project will deliver solutions for management of potential climate related stressors to ensure the future health of aquatic ecosystems.
The project focuses on the headwater of upper reaches of river systems and investigates the effects of climatic influences on the hyporheic zone, the highly active reaction space in the transition zone between river and the environment. For this purpose, various typical study sites in the non-Alpine regions of Bavaria have been selected.
The seven subprojects are linked together by cross sectoral themes. In the research phase 2018-2021, the following cross-cutting topics are in focus:
In the subsequent implementation phase 2021-2023, the focus is on implementation and management as well as environmental education and public outreach. The transition between the research and implementation phases will be accompanied by a central Workshop “Results and recommendations for action” in 2021. To this end, the research results are evaluated with regard to the social, political and administrative implementation of measures, and the objectives of an implementation are defined together with different interest groups. The project AquaKlif is accompanied by a project-related working group.
For AquaKlif, the year 2021 marks the transition from research to implementation. Here’s a brief update on the achievements in the AquaKlif subprojects to date, including several photos of different research campaigns.
The interdisciplinary flow channel experiment in Freising – center piece for the mechanistic understanding of different stressors – proved to be complex in planning and implementation. Measurements have taken place since summer 2020 with the influence of individual or combined stressors being analyzed over realistic time frames. The aim is to understand the impact of rising temperatures, fine sediment input and lower flow rates on colonization through organisms and fish egg development and how this changes biogeometrical parameters (SP1, SP2 and SP3).
Since the beginning of the project, data on water ecology and chemistry, stable isotopes and groundwater input has been recorded in numerous measuring campaigns at three selected creeks. The open land results should help to transfer the insights from flow channels to larger scales. The Permuschelbäche in Hof, the Moosach in the calcaerous moraine area, and the Wiesent in Franconian Switzerland represent relevant watercourses in the non-alpine region of Bavaria. It is becoming apparent that the combination of low water levels and high temperatures can drive the precipitation of iron ochre with negative consequences for water ecology (SP1, SP2 and SP3).
Data recordings over the past 30 years regarding plant societies and water chemistry of more than 100 forest springs in Frankenwald and Fichtelgebirge were continued. Many springs had dried up at the end of the dry summers in 2018 and 2019. Over the years, clear trends have emerged with regards to certain key species and biodiversity (SP4).
Working with regionalized climate scenarios, which were supplied by the State Office of Environment (Landesamt für Umwelt), was particularly exciting. This allowed for a calculation of impact on the level of individual catchment areas. The re-mapping of moor areas around the Lehstenbach showed the advanced degradation of the habitat and enables a more precise modelling and estimation of the actual discharge retention (SP5).
With the help of the Soil and Water Assessment Tool SWAT and the climate scenarios, the potential of agricultural cultivation methods for ecosystem services – in particular erosion regulation, nutrient retention and water supply – is being estimated based on topography, soil and current land use data. The modelling data for the catchment area of Schwesnitz is in full process (SP6).
Early on during the research phase, exciting guests such as Norbert Bäuml (Praxiplattform boden:ständig) and the renown water ecologist Klement Trockner were invited. bayklif research topics were presented at the geoecology annual meeting 2019. Some outreach activities had to be postponed or rearranged due to the pandemic: as such, thematic panel discussions with live stream (“Wasserkonstroversen”) are replacing the workshop for exchanging experiences between science and practice. A podcast on moor renaturation and further digital formats for environmental education are in the making (coordination: SP7).
Currently, measurement and modelling results are being analyzed, publications are in preparation and further data is being recorded in subprojects which started at a later time point. Meanwhile, the AquaKlif team has acquired international reinforcement from South Africa, India and Peru.
Many stream-dwelling species do not only depend on clean water, but also on a functional stream bed. Fine soil particles that are washed out from surrounding fields and settle on the stream bed can result in colmation and oxygen-depletion. By additional “climate-related stress”, e.g. higher temperatures and extended dry periods with little discharge, but also by torrential rains that cause additional erosion, these effects can be exacerbated.
In this subproject, the scientists investigate at flow channels and real streams the effects of the expected double burden on aquatic animals. They plan to deduce which measures in the restoration of brooks are most promising for future climate conditions.
One critical factor for anticipated “good conditions” of waterbodies is the amount of dissolved oxygen. In this subproject, we investigate climate-related shifts of oxygen in streams to characterize ecological states. Based on these results, recommendations for protection of streams will help to establish a more “positive chemistry” in surface waters.
A new measurement method in this subproject will apply stable isotope ratios of dissolved oxygen. It offers new opportunities to determine its pathways in the water column, in sediments and in associated ground waters. These investigations help to answer the following questions:
Stable isotope investigations can also apply to other elements such as carbon. Such expansions help to better understand interconnections in carbon and oxygen cycles in water compartments including pore- and ground waters. The Applied Geology group of the Friedrich-Alexander-Universität Erlangen-Nürnberg is one of the few laboratories that offers combined isotope measurements of oxygen and carbon in aqueous cycles and thus supplies new tools of investigation in aqueous research.
Climate change is expected to increase the frequency of periods with little or no rainfall, which will lead to low water levels and flow in streams. Such dry periods have been observed several times in Bavaria during mid and late summer over the last decade. During such draught periods there is an increased risk that certain spots of steam sediment have little or no oxygen, which is both chemically and biologically relevant for stream health. The low oxygen levels induces a whole series of chemical reactions, which are easily recognized by the precipitation of reddish brown iron hydroxides on the steam bed, vegetation and other stream material.
When and where do such oxygen-free zones occur? What is the influence of elevated temperatures, low discharge rates and sediment input on their development? The results of this subproject are important to assess the future water quality of streams and their ecological status.
For more than 25 years, the Department of Biogeography at the University of Bayreuth has been studying the water of spring areas in Upper Franconian forests as well as the characteristic plant communities growing around these swamp springs. The water chemistry of spring water – as well as certain “indicator” plant species – can be used to deduce ecological processes in the catchment area. The aim of the subproject is to determine if and how the temperature of the springs and the indicator species growing there are related, and how the amount of rain and spring water affects the water temperature. Further spring locations in Steinwald, Oberpfälzer Wald and Bavarian Forest are included to characterize the climatic conditions of Bavarian forest landscapes.
The average temperature of the earth has been rising for a long time now, and the resulting consequences for ecosystems are only poorly understood. It has been shown that climate change also impacts the water chemistry of rivers and streams.
In this subproject, data of the integrated hydrological monitoring programs collected over decades at the University of Bayreuth and the Bavarian Environment Agency (LfU) are statistically analyzed. Objectives of this subproject are: Are there clear trends and patterns in the time series that can be traced back to local climatic changes in the different catchments? Can causal relationships be proven statistically? Depending on the local climate scenarios of the Bavarian Environment Agency, can it be used to predict future developments of water-chemical parameters?
After heavy rainfall in Bavaria’s streams, the swept-in soil not only clogs the gravelly habitat of many aquatic animals, it also carries along large amounts of nutrients such as nitrogen and phosphorus, which were intended to fertilize meadows and farmland. Instead, these nutrients promote the growth of algae and aquatic plants in the stream – weeding and lack of oxygen at the river bottom are the consequences.
With climate change, the problem is exacerbated in two ways: on the one hand, the nutrients applied to fields and meadows are more poorly absorbed by the plants in dry phases; on the other hand, more frequent heavy rains are likely to flood the fertilized soil.
What can be done to keep yields in agriculture as stable as possible in the future and to reduce the nutrient load in waters? In this subproject, climate forecasts for Bavaria are used to investigate how alternative agricultural production measures impact crop yields and nutrient loads in selected river basins.
The subproject aims at preparing and implementing the results from the research phase of AQUAKLIF on two levels:
Implementation in practice – deriving options for action
Implementation within environmental education and public outreach actions